

Profiltafel in Positiv- oder Negativlage Maße in mm

Nennwert der Spannung an der 0,2 % Dehngrenze R_{x02} = 185 N/mm², Zugfestigkeit R_m = 205 N/mm²

Maßgebende Querschnittswerte

Blech-	Eigenlast	Bieg	ung 1)		Norn	nalkraftbe	anspruchu	ng		Grenzstü	itzweiten ³⁾
dicke				nicht reduz	ierter Qu	erschnitt	wirksame	er Querso	chnitt ²⁾	Einfeld- träger	Mehrfeld- träger
t	g	+ eff	l. eff	A _g	i _g	Z _g	A _{eff}	i _{eff}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	Cr	n	m	m
0,60	0,021	14,7	14,7	6,95							
0,70	0,025	17,2	17,2	8,11							
0,80	0,028	19,7	19,7	9,27							
0,90	0,032	22,1	22,1	10,43							
1,00	0,035	24,6	24,6	11,59							

Schubfeldwerte

		Grenzzustand	l der Tragfähigk	eit	Grenzz	zustand der Gebrauchstauglichkeit			
t	L _R	T _{1,Rk}	T crit,g	T _{crit,I}	T _{3,Rk,N}	T _{R3,Rk,S}	k' ₁	k' ₂	
mm	m		kN/m		kN	l/m	m/kN	m²/kN	
Beiwerte	k* ₁ =	-	1/kN	K* ₂ =	- m²/kN	K* ₃ =			

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{p0,2}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.

Aluminium- Wellprofile und ihre Verbindungen	Anlage 6.1
Wellprofil 42/160	
Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit und Schubfeldwerte	

Z67914.20 1.14.1-97/19

Profiltafel in Positiv- oder Negativlage

Nennwert der Spannung an der 0,2 % Dehngrenze $R_{00.2} = 185$ N/mm², Zugfestigkeit $R_m =$

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 1)

Blech-	Feldmo-	Endauflad	erkraft ²⁾³⁾	Schnittgrößen an den Zwischenauflagern 2) 3) 4) 6)									
dicke	ment		$I_a = Auflagerbreite$ Lineare Interaktion ($\varepsilon = 1$)				Lineare Interaktion (ε = 1)						
		l _a = -	I _a = 40 mm	Zwischena	uflagerbrei	te l _{a,B} ≥	40 mm	Zwischena	auflagerbreit	te l _{a,8} ≥	-		
t	M _{c,Rk,F}	$\mathbf{R}_{w,Rk,A}$	R _{w,Rk,A}	M ^o Rk,B	R⁰ _{Rk,B}	M _{c,Rk,B}	$R_{w,Rk,B}$	M ⁰ Rk,B	R⁰ _{Rk,B}	M _{c,Rk,B}	$R_{w,Rk,B}$		
mm	kNm/m	kN	l/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m		
0,60	1,33	-	2,37	0,800	11,6	0,627	4,72				/		
0,70	1,55	-	3,21	1,090	15,8	0,853	6,43						
0,80	1,77	-	4,41	1,440	22,8	1,177	8,82						
0,90	1,99	-	5,60	1,790	29,8	1,500	11,20		/				
1,00	2,22	-	6,22	2,000	33,1	1,670	12,50						

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 4) 5)

Blech-	Feldmo-	Verbindung in jedem Gurt mit Kalotte 7)						Verbindung in jedem anliegenden Gurt 7)					
dicke	ment	Endauf- lagerkraft					Endauf- lagerkraft	M/V- Interaktion			tion		
t	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	R ⁰ _{Rk,B}	M _{c,Rk,B}	$R_{w,Rk,B}$	$V_{w,Rk}$	R _{w,Rk,A}	M ^o _{Rk,B}	R ⁰ _{Rk,B}	M _{c,Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kN/m	kN/m	kN/m
0,60	1,33	2,37	0,800	11,6	0,627	4,72	-	26,0	-	-	1,33	-	26,0
0,70	1,55	3,21	1,090	15,8	0,853	6,43	-	30,3	-	-	1,55	-	30,3
0,80	1,77	4,41	1,440	22,8	1,177	8,82	-	34,6	-	-]	1,77	-	34,6
0,90	1,99	5,60	1,790	29,8	1,500	11,20	-	38,9	-	-	1,99	-	38,9
1,00	2,22	6,22	2,000	33,1	1,670	12,50	-	43,3	-	-	2,22	-	43,3

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{c,Rik,P}$, sondern mit dem Stützmoment $M_{c,Rik,B}$ für die entgegengesetzte Lastrichtung zu führen.
- 2) Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm darf maximal 10 mm eingesetzt
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.
- M/R- Interaktion

$$\frac{M_{Ed}}{M_{Rk,B}^{0}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,B}^{0}/\gamma_{M}}\right)^{\epsilon} \leq 1$$

$$\frac{M_{\text{Ed}}}{M_{\text{Rk},B}^{0}/\gamma_{\text{M}}} + \left(\frac{F_{\text{Ed}}}{R_{\text{Rk},B}^{0}/\gamma_{\text{M}}}\right)^{\xi} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} \leq 0.5: \\ \frac{M_{\text{Ed}}}{V_{\text{w,Rk},B}/\gamma_{\text{M}}} \leq 1 \qquad \frac{V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} > 0.5: \\ \frac{M_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} + \left(\frac{2 \cdot V_{\text{Ed}}}{V_{\text{w,Rk}}/\gamma_{\text{M}}} - 1\right)^{2} \leq 1$$

- 6) Sind keine Werte für $M^0_{Rk,B}$ und $R^0_{Rk,B}$ angegeben, ist kein Interaktionsnachweis zu führen
- 7) Bei Verbindung in jedem 2. Gurt müssen die angegebenen Werte halbiert werden.

Aluminium- Wellprofile und ihre Verbindunger	1
--	---

Anlage 6.2

Wellprofil 42/160

Charakteristische Werte der Widerstandsgrößen der Profiltafeln

Teilsicherheitsbeiwert $\gamma_{M} = 1,1$

Profiltafel in Positiv- oder Negativlage

Nennwert der Spannung an der 0,2 % Dehngrenze R_{50,2} = 185 N/mm², Zugfestigkeit R_m = 205 N/mm²

Aufnehmbare Durchknöpfkraft Z_{Rk} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

	Verbindung	t = 0,60	t = 0,70	t = 0,80	t = 0,90	t = 1,00	t = -
	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben Ø 16 mm gem. abZ oder ETA und mit Kalotten EJOT Orkan W48 gem. abZ Z-14.4-814	0,82	1,13	1,29	1,45	1,61	-
~	Bohrschrauben SFS SXCW-S19-6,5 x L gem. ETA-13/0183	0,82	1,13	1,29	1,45	1,61	-
~~	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben Ø 10 mm ⁴⁾ gem. abZ oder ETA	0,53	0,72	0,88	1,03	1,14	-
~	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben Ø 16 mm ^{3) 4)} gem. abZ oder ETA	0,82	1,13	1,29	1,45	1,61	-

¹⁾ Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.

⁴⁾ Abminderungsbeiwert α_L zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN EN 1999-1-4, Tabelle 8.1 (α_L = 1,0 bei Befestigung am Endauflager)

Aluminium- Wellprofile und ihre Verbindungen	Anlage 6.3
Wellprofil 42/160	
Charakteristische Werte der Widerstandsgrößen der Verbindungen Teilsicherheitsbeiwert $\gamma_{\rm M}=1,33$	

Z67914.20 1.14.1-97/19

²⁾ Abminderungsbeiwert $\alpha_{\rm E}$ zur Berücksichtigung der Anordnung der Verbindung nach DIN EN 1999-1-4, Tabelle 8.3

³⁾ Abminderungsbeiwert $\alpha_{_{\!M}}$ für Schrauben mit Aluminiumdichtscheiben siehe DIN EN 1999-1-4, Tabelle 8.2